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Abstract. Certain useful basic results of the gradient (in the smooth case), the Clarke subdifferen-
tial, the Michel–Penot subdifferential, which is also known as the "small" subdifferential, and the
directional derivative (in the nonsmooth case) are stated and discussed. One of the advantages of
the Michel–Penot subdifferential is the fact that it is in general "smaller" than the Clarke subdif-
ferential. In this paper it is shown that there exist subdifferentials which may be smaller than the
Michel–Penot subdifferential and which have certain useful calculus. It is further shown that in the
case of quasidifferentiability, the Michel–Penot subdifferential enjoys calculus which hold for the
Clarke subdifferential only in the regular case.
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1. Introduction

With the discovery of the convex subdifferential (see [16]) and the subdifferential
of a max-type function (see, e.g. [3,4]) it was generally understood that in the
nonsmooth case it is not sufficient to employ a singleton – the gradient – to
study properties of a function. Since the subdifferentials (in the mentioned cases)
appeared to be convex sets it was a great temptation to look for similar convex ones
in a general nonsmooth case. Pschenichnyi [13] developed upper convex and lower
concave approximations. The introduction of the Clarke sub-differential [1] was a
great breakthrough, and a safari season started in the Wilderness of Endolandia.1

Many different generalizations of the concept of gradient have been proposed. The
most productive hunter (as to the authors’ knowledge) is J.-P. Penot. He discovered
and studied many convex objects, one of the most promising and popular being
that of “small subdifferential” (nurtured jointly by P. Michel and J.-P. Penot [12]).

Our aim is two-fold:
(a) to demonstrate that in some cases there exists a Calculus for “small” subdiffer-
entials; (b) to show that, like a kangaroo, the small subdifferential contains in itself
even a smaller one (or smaller ones).

� Research of the first author was partially supported by grants from the Australian Research
Council and the G. Soros Foundation (p.468)

1 The Land of NDO-Nondifferentiable Optimization – the term introduced by M. Balinski
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Indeed, the Wilderness of Endolandia is still full of surprises and a persistant
hunter may be lucky.

In the paper only the finite-dimenstional case is considered. We discuss mostly
Lipschitz directionally differentiable functions. After a brief review of the proper-
ties of the gradient in the smooth case we show that in the nonsmooth case several
tools are needed to solve the problems which in the smooth case are solved by
means of the gradient. In particular, we indicate several problems where the Clarke
subdifferential can be employed for solving them. Then we observe that the same
problems can be treated by means of the Michel–Penot subdifferential which in
some cases is “smaller” than the Clarke one and, hence, provides sharper results.
It is also shown that for the Michel–Penot subdifferentials there exists (in the case
of Lipschitz quasidifferentiable functions) a Calculus (exact rules – equalities – for
computing “small” subdifferentials).

Using the idea of convexificator [7,8] we can solve the same problems which are
solved by means of the Clarke and Michel–Penot subdifferentials. It turns out that
both subdifferentials (the Clarke one and Michel–Penot one) are convexifactors
and have been used just in this capacity. In some cases it is possible to find a con-
vexificator (or convexificators) which is (are) even smaller than the Michel–Penot
one. For this purpose the notion of minimal convexificator seems to be promising
[7,8]. It opend the way for a more thorough study of nonsmooth functions.

2. The Gradient: The Principal Tool in Smooth Analysis

We begin by recalling some properties of the gradient – the principal tool in smooth
analysis.

Let a function f : 
! IR be continuously differentiable on 
 where 
 � IRn

is an open set. Then the gradient mapping f 0 : 
! IRn is defined and continuous
on 
. Fix any x 2 
: By means of the gradient one is able:
1. To find the directional derivative of f at x in any direction g :

f 0(x; g) := lim
�#0

f(x+ dg)� f(x)

�
= (f 0(x); g): (1)

2. To construct a first-order approximation of f near x:

f(x+�) = f(x) + (f 0(x);�) + 0x(�) (2)

where for each �,

0x(��)

�
�!
�#0

0: (3)

3. To formulate necessary conditions for an extremum:
3a: For a point x� 2 
 to be a minimum point of f it is necessary that

f 0(x�) = 0n (4)
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3b: For a point x�� 2 
 to be a maximum point of f it is necessary that

f 0(x��) = 0: (5)

Note that the conditions (4) and (5) coincide and that a point x, satisfying (4)
and (5) is called a stationary point.

4. To find directions of the steepest descent and ascent:

4a: the direction g0 = � f 0(x)

kf 0(x)k is the steepest descent direction.

4b: the direction g1 =
f 0(x)

kf 0(x)k is the steepest ascent direction.

Note that in the smooth case there exists only one steepest descent direction
and only one steepest ascent direction and that

g0 = �g1: (6)

The following also hold:
5. If f 0(x; g) < 0 then f 0(x;�g) > 0, that is, if a function f is decreasing in

some direction it is necessarily increasing in the opposite direction, and, by the
way, due to (1),

f 0(x; g) = �f 0(x;�g): (7)

6. If f 0(x; g) < 0 then f 0(x0; g) < 0 for allx0 near the pointx (that is, the direction
g is a robust direction of descent: if f is decreasing at x in a direction g, it is
also decreasing in the same direction at all points from some neighbourhood
of x). The same is true with respect to ascent directions.

7. The function F (x;�) = (f 0(x);�) = f 0(x;�), which is an approximation of
the increment f(x+�)� f(x), is continuous as a function of x.

8. The following mean-value theorem is valid: If the interval cofx1; x2g � 

then there exists and � 2 (0; 1) such that

f(x2)� f(x1) = (f 0(x1 + �(x2 � x1)); x2 � x1): (8)

9. It is also understood (usually not stated explicitly) that one can study the above
properties (and many others) by means only (n+ 1) numbers (the value of f
at x and n partial derivatives constituting the gradient). Therefore it is only
necessary to compute and to store the mentioned (n+ 1) numbers.

3. Directionally Differentiable Functions

Now let us assume that f : 
! IR is directionally differentiable (d.d.) on 
 (i.e.,
the limit (1) exists and is finite for every g 2 IRn) and the directional derivative
is continuous as a function of direction. Since f 0(x; g) is positively homogeneous
(p.h.) of degree 1, i.e.

f 0(x; �g) = �f 0(x; g); 8� � 0; (9)
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it is sufficient to consider only g 2 S1 = fg 2 IRnj kgk = 1g:
Examining problems 1–8 of Section 2, we observe that the directional derivative

allows us
(1) to find the directional derivative (by the definition),
(2) to construct a first-order approximation,

f(x+�) = f(x) + f 0(x;�) + 0x(�) (10)

where 0x(�) satisfies (3),
(3) to formulate necessary conditions for an extremum; thus,
(3a) for a point x� 2 
 to be a minimum point of f it is necessary that

f 0(x�; g) � 0; 8g 2 IRn: (11)

If

f 0(x�; g) > 0; 8g 6= 0n (12)

then x� is a strict local minimum point.
(3b) for a point x�� 2 
 to be a maximum point of f it is necessary that

f 0(x��; g) � 0 8g 2 IRn: (13)

If

f 0(x��; g) < 0 8g 6= 0n (14)

then x�� is a strict local maximum point.
Note that necessary conditions for a maximum and a minimum do not coincide

any more and sufficient conditions (12) and (14) have no equivalence in the smooth
case, they are just impossible.

(4) to define directions of steepest ascent and descent; however, they are not
necessarily unique any more, and the property similar to (6) doesn’t hold now. The
properties (5) and (7) of Section 2 don’t hold any more.

(8) to formulate the following mean-value property that for for the interval
cofx1; x2g � 
, there exists an � 2 (0; 1) such that

f(x2)� f(x1) = f 0(x1 + �(x2 � x1); x2 � x1): (15)

4. Locally Lipschitz Functions

Assume now that f : 
! IR is locally Lipschitz. To preserve something similar to
properties (5) - (7), one can employ upper and lower Clarke directional derivatives:

f
"

cl(x; g) = lim sup
[�;x0]![0+; x]

1
�
[f(x0 + �g)� f(x0)] (16)
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f
#

cl(x; g) = lim inf
[�;x0]![0+; x]

1
�
[f(x0 + �g)� f(x0)]: (17)

If f is locally Lipschitz then the limits in (16) and (17) exist and are finite and the
following important properties hold:

f
"

cl(x; g) = max
v2@

cl
f(x)

(v; g);

f
#
cl(x; g) = min

w2@
cl
f(x)

(w; g); (18)

where

@clf(x) = cofv 2 IRn
��9fxng : xk ! x; xk 2 T (f); f 0(xk)! vg; (19)

T (f) is the set of points of 
 where f is differentiable (since f is locally Lip-
schitz, f is differentiable almost everywhere). The set @clf(x); called the Clarke
subdifferential of f at x, is a nonempty, convex and compact set (see [1]).

The inclusion 0 2 @clf(x) is a necessary optimality condition (both for a
minimum and a maximum). If f is also d.d. and 0 2 @clf(x), then there exist
directions g0s such that

f
"
cl(x; g) < 0: (20)

It is clear from (18) that f#cl(x;�g) = �f"cl(x; g) > 0 and now it is easy to see that

f 0(x; g) � f
"
cl(x; g)< 0; f 0(x;�g) � f

#
cl(x; g) > 0: (21)

Hence, the property (21) is a replacement for property (5) in the smooth case. Thus,
if (21) holds, g is a descent direction and g1 = �g is an ascent direction.

It is also possible to show that if f"cl(v; g) < 0; then f 0(x; g) < 0 and f 0(x0; g) <
0 for all x0 near x, i.e. this property is similar to property (6) in the smooth case
(and, hence, g is a robust direction of descent). An analogous property holds if
f
#
cl(v; g) > 0 (then g is a robust direction of ascent).

The functions f"cl(x; g) and f#cl(x; g) are, in general, discontinuous (as well as the
set-valued mapping @clf : IRn ! 2IRn

): A mean-value theorem can be formulated
by means of the Clarke directional derivatives (see [1]).

To sum up, we observe that in the locally Lipschitz non-smooth case it appears
that we need different tools (namely, the directional derivative and the Clarke
derivatives) to solve problems similar to the ones stated in Section 2 for a smooth
function. Thus there is no flexible tool such as the gradient in the Nonsmooth case.

It is worth noting that all the above results are applicable only if one is able to
compute numerically the mentioned function values and gradients. In the sequel
we shall discuss the possibility of constructing a tool which answers the same
questions as the Clarke subdifferential does and which is in some sense simpler.
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5. The Michel–Penot Subdifferential

Michel and Penot proposed the following generalized derivative (see [12])

f"mp(x; g) = sup
q2IRn

(
lim sup
�#0

1
�
[f(x+ �(g + q))� f(x+ �q)]

)
: (22)

We shall call it the Michel–Penot upper derivative of f at x in the direction g. The
quantity

f#mp(x; g) = inf
q2IRn

�
lim inf
�#0

1
�
[f(x+ �(g + q)� f(x+ �q)]

�
(23)

will be referred to as the Michel–Penot lower derivative of f at x in the direction g.
If f is locally Lipschits then there exists a convex compact set @mpf(x) such that

f"mp(x; g) = max
v2@mpf(x)

(v; g); (24)

f#mp(x; g) = min
w2@mpf(x)

(w; g): (25)

Recall that if f is also d.d. then @mpf(x) is the Clarke subdifferential of the
function h(g) = f 0(x; g) at g = 0n. The set @mpf(x) is often referred to as the
small subdifferential. It is known in general that

@mpf(x) � @clf(x) (26)

and in some cases

@mpf(x) 6= @clf(x): (27)

At the same time, it preserves some of the properties of @clf(x). Namely, the
condition

On 2 @mpf(x) (28)

is a necessary condition for an extremum (a minimum and a maximum alike). The
condition (28) is stronger than the condition that 0 2 @clf(x) if (28) holds.

If f is d.d. and (28) is not yet satisfied then there exist directions g’s such that

f"mp(x; g) < 0; (29)

and for such a direction one has

f 0(x; g) � f"mp(x; g) < 0; (30)

while

f 0(x;�g) � f#mp(x;�g) = �f#mp(x; g) > 0; (31)
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i.e. all the directions satisfying (29) are descent directions, while the opposite
directions are ascent ones. Unfortunately, the robustness of a direction satisfying
(29) and (30) is not guaranteed. This is because the mapping @mpf (unlike the
mapping @clf ) is not upper semicontinuous in X .

Hence, the small subdifferential of Michel and Penot has properties similar to
te ones of the Clarke subdifferential. Since @mpf(x) is "smaller" than @clf(x), it
has some preferences: (i) the necessary condition (28) is stronger; (ii) the family
of directions satisfying simultaneously (30) and (31) is in general greater than the
similar family obtained by means of the Clarke subdifferential.

Another advantage of the small subdifferential is the fact that if f is quasi-
differentiable, one can construct Calculus for computing "small" subdifferentials.

The notion of small subdifferential has been used by many authors to get new
results (see [2, 17, 9]). Most generalizations of the concept of gradient are also
employed to get new "mean-value theorems" (see [11, 18, 1]).

6. Quasidifferentiable Functions: Calculus for the Michel–Penot
Subdifferentials

Let the function f be Lipschitz on an open set 
 � IRn and quasidifferentiable at
x 2 
, i.e. it is directionally differentiable at x and there exists a pair of convex
compact sets @f(x); @f(x) � IRn such that, for each g 2 IRn

f 0(x; g) = max
v2@f(x)

(v; g) + min
w2@f(x)

(w; g): (32)

The pair of sets Df(x) = [@f(x); @f(x)] is called a quasidifferential of f at x.
There exists a well-developed Calculus for computing quasidifferentials (see [6,7])
which is a generalization of the classical "smooth" Differential Calculus.

It is convenient to describe necessary optimality conditions in terms of quasi-
differentials. For example, a necessary condition for a minimum takes the form

�@f(x�) � @f(x�) (320)

and a necessary condition for a maximum is

�@f(x��) � @f(x��): (32")

Let A � IRn and B � IRn be convex compact sets and let �A(g) and �B(g) be
their support functions

�A(g) = max
v2A

(v; g); �B(g) = max
v2B

(v; g):

These functions are almost everywhere differentiable. By definition

A _�B = cl co fr�A(g) �r�B(g)jg 2 Tg (33)
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Figure 1.

where T is any set of full measure of differentiability points of �A and �B . The
difference of sets just defined is consistent: If

A = B + C then A _�B = C:

As a corollary, we get A _�A = On:
The difference _� was introduced in [5] and studied by Rubinov and Akhundov

[17]. It was shown in [17, 7] that

@clh(0n) = @f(x) _�(�@f(x)) (34)

where h(g) = f 0(x; g).
It was demonstrated in [11,12] that if f is locally Lipschitz and directionally

differentiable then

@mpf(x) = @clh(0n): (35)

Combining (34) and (35) we arrive at the following result.

THEOREM 6.1. If f is locally Lipschitz and quasidifferentiable at a point x, then

@mpf(x) = @f(x) _�(�@f(x)): (36)

REMARK. Since there exists a Calculus for quasidifferentiable functions, there
exists a Calculus for the Michel–Penot subdifferentials: first find a quasidifferential
of f at x and then apply Theorem 6.1. (of course, f is Locally Lipschitz and
quasidifferentiable at x).

The connection between the Clarke subdifferential and the quasidifferential is
discussed in [7, sect.4, ch.3].
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7. Convexificators of a Positively Homogeneous Function

Let h : IRn ! IR be a positively homogeneous (p.h.) (of degree 1) function. We
say that a convex compact set C � IRn is a convexificator (CF) of h if

min
w2C

(w; g) � h(g) � max
v2C

(v; g); 8 g 2 IRn: (37)

Note that max and min in (37) are taken over the same set C!
If h is bounded on S1 = fg 2 IRn

�� kgk = 1g then there is no problem
of existence of a convexificator: any ball centered at the origin with the radius
sufficiently large can be taken as a convexificator. The notion of convexificator
was introduced and studied in [8] (see also [7]). Note that in many applications the
functionh is often taken as some kind of a generalized directional derivative.

THEOREM 7.1. The following properties hold:
1. If

h(g) � 0 8 g 2 IRn (38)

then 0n 2 C .
2. If

h(g) > 0 8 g 6= 0n (39)

then

0n 2 int C (40)

3. If

h(g) � 0 g 2 IRn (41)

then

0n 2 C (42)

4. If

h(g) < 0 8 g 6= 0n (43)

then

0n 2 int C (44)

5. If

0n =2 C (45)

then the sets

Q� =

�
g 2 S1

��max
v2C

(v; g) < 0
�

(46)
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Q+ =

�
g 2 S1

��min
v2C

(v; g) > 0
�

(47)

are nonempty and

Q� = �Q+: (48)

Proof.
1. If (38) holds then (37) implies

max
v2C

(v; y) � 0 8 g 2 IRn: (49)

The inequality (49) is equivalent (see [4,6]) to 0n 2 C .
2. The inequalities (39) and (37) imply

max
v2C

(v; g) > 0 8 g 6= 0n: (50)

The inequality (50) is equivalent (see [4,6]) to the inclusion

0n 2 int C: (51)

3. Analogeously, the inequalities (41) and (37) imply

min
w2C

(w; g) � 0; 8 g 2 IRn (52)

which is equivalent to

max
v2C

(v; g) � 0; 8 g 2 IRn; (53)

and, hence, 0n 2 C .
4. The inequalities (43) and (37) imply the inequality minw2C(w; g) < 0; 8 g 6=

0n which is the same as maxv2C(v; g) > 0 8 g 6= 0n, and, therefore,
0n 2 int C:

5. If (45) holds then

kv�k = min
v2C

kvk > 0 (54)

It then follows from necessary conditions for a minimum that

max
v2C

(v; g0) � �kv�k < 0; (55)

where

g0 = � v�

kv � k : (56)

Thus, the set Q� is not empty. The inequality (55) also yields

min
w2C

(w; g1) � kv�k > 0 (57)

with g1 = �g0. Hence, the set Q� is also not empty. It is clear from the
definitions (49) and (50) that Q+ = �Q�.
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COROLLARY 7.1. If (45) holds then (37) implies

h(g) < 0; 8 g 2 Q�; (58)

h(g) > 0; 8 g 2 Q+; (59)

and (59) can be rewritten in the form

h(�g) > 0 8 g 2 Q�: (60)

REMARK. The inclusion 0n 2 C doesn’t necessarily imply that one of the
inequalities (38) or (41) holds, as well as the inclusion 0n 2 int C doesn’t
necessarily mean that one of the inequalities (39) or (43) holds. However, if h is
in addition, convex then the condition 0 2 C becomes a necessary and sufficient
condition for the inequality

h(g) � 0 8 g 2 IRn:

8. Minimal Convexificators

It follows from definition (37) that a convexificator is not uniquely defined: If C
is (CF ) of h then the set C1 = A+C (with A an arbitrary convex compact set) is
also a (CF ) of h.

We say that C� is a minimal convexificator of h if there exists no other convex
compact set C such that C � C�, C 6= C� and C is a (CF ) of h.

EXAMPLE 8.1. Let h : IRn ! IR be a convex positively homogeneous function,
then there exists a (unique) convex compact set A � IRn such that

h(g) = max
v2A

(v; g): (61)

Clearly A is a CF of h. This CF is a minimal one (and unique!).

EXAMPLE 8.2. Let h : IRn ! IR be a concave positively homogeneous function,
then there exists a (unique) convex compact set B � IRn such that

h(g) = min
w2B

(w; g): (62)

Clearly, B is a (CF ). It is a minimal one (and unique!).

EXAMPLE 8.3. Let h : IR2 ! IR be defined by

h(g) = h(g1; g2) = jg1j � jg2j:
It is not difficult to check that the set C = co f(1; 1); (1;�1); (�1; 1); (�1;�1)g
is a (CF ):

min
w2C

(w; g) � h(g) � max
v2C

(v; g):
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Figure 2.

Take now the sets

C1 = co f(1; 1); (�1;�1)g; C2 = co f(�1; 1); (1;�1)g:
Direct calculations show that

min
w2C1

(w; g) � h(g) � max
v2C1

(v; g)

min
w2C2

(w; g) � h(g) � max
v2C2

(v; g);

i.e. the sets C1 and C2 are convexificators as well, and since C1 � C;C2 � C
we conclude that C is not a minimal CF , however, the sets C1 and C2 are both
minimal.

Now one can develop a Calculus for computing convexificators. For example, the
following property holds.

THEOREM 8.1. If functionsh1; h2 are p.h.,�1; �2 2 IR,C1; C2 are convexificators
of h1; h2, respectively, then the function h = �1h1 + �2h2 is also p.h. and the set
C = �1C1 + �2C2 is a convexificator of h.

Proof. It suffices to prove the required property for functions h = h1 + h2

and h = �h1. If h1; h2 are positively homogeneous functions then the function
h = h1 +h2 is also p.h. and if C1; C2 are convexificators of h1 and h2 respectively,
then the set C = C1 + C2 = fv = v1 + v2jv1 2 C1; v2 2 C2g (the Minkowski
sum) is a (CF ) of h. Indeed, we have

min
w2C1

(w; g) � h1(g) � max
v2C1

(v; g); 8g 2 IRn (63)
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min
w2C2

(w; g) � h2(g) � max
v2C2

(v; g); 8g 2 IRn: (64)

It follows from (63) and (64) that

min
w2C1

(w; g) + min
w2C2

(w; g) � h1(g) + h2(g) � max
v2C1

(v; g) + max
v2C2

(v; g): (65)

Since

min
w2C1

(w; g) + min
w2C2

(w; g) = min
w2C1+C2

(w; g) = min
w2C

(w; g);

max
v2C1

(v; g) + max
v2C2

(v; g) = max
v2C1+C2

(v; g) = max
v2C

(v; g);

the inequalities (65) yield the required property.
Now let h1 be p.h, � 2 IR; C1 be a (CF ) of h1. The function h = �h1 is p.h.

for any � 2 IR. We have

min
w2C1

(w; g) � h1(g) � max
v2C1

(v; g): (66)

If � � 0 then (66) implies

� min
w2C1

(w; g) � �h1(g) � �max
v2C1

(v; g): (67)

Since

� min
w2C1

(w; g) = min
w2(�C1)

(w; g);

�max
v2C1

(v; g) = max
v2(�C1)

(v; g);

(67) yields

min
w2C

(w; g) � h(g) � max
v2C

(v; g); (68)

where

C = �C1 = fv = �v1jv1 2 Cg:

If � < 0 then we get from (66)

� min
w2C1

(w; g) � �h1(g) � �max
v2C1

(v; g): (69)

Since � < 0

� min
w2C1

(w; g) = max
v2(�C1)

(v; g); �max
v2C1

(v; g) = min
w2(�C1)

(w; g);
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therefore (69) again yields

min
w2C

(w; g) � h(g) � max
v2C

(v; g)

with C = �C1.

REMARK. If C1; C2 are minimal (CF ) of the functions h1; h2, respectively, the
set C = C1 + C2 is not necessarily a minimal (CF ) of the function h = h1 + h2.

EXAMPLE 8.4. Let h1; h2 : IR2 ! IR be defined as follows

h1(g) = jg1j; h2(g) = �jg2j:

The function h1 is convex, and the set C1 = co f(1; 0); (�1; 0)g is a mini-
mal (and unique!) (CF ) of h1 The function h2 is concave and the set C2 =
co f(0; 1); (0;�1)g is its minimal (and unique!) (CF ). The set

C = C1 + C2 = co f(1; 1); (1;�1); (�1; 1); (�1; 1)g

is a (CF ) of the function h = h1 + h2 but not a minimal one (see Example 8.3).

9. Convexificators for Locally Lipschitz Functions

Let the function f : 
! IR be locally Lipschitz on an open set 
 � IRn. Then its
upper and lower Dini derivatives

f
"
D(x; g) = lim sup

�#0

f(x+ �g)� f(x)

�

and

f
#
D(x; g) = lim inf

�#0

f(x+ �g) � f(x)

�

are bounded and continuous in g. By the definition (see (16), (17)) we get

f
#

cl(x; g) � f
#
D(x; g) � f

"
D(x; g) � f

"

cl(x; g): (70)

Using (18) and (19) we get

min
w2@

cl
f(x)

(w; g) � f
#
D(x; g) � f

"
D(x; g) � max

v2@
cl
f(x)

(v; g): (71)

Hence, the Clarke subdifferential of f at x is a convexificator of both functions

h(g) = f
"
D(x; g) and h(g) = f

#
D(x; g):
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From the definitions (23) and (24) and the formulas (25) and (26) we conclude that

min
w2@mpf(x)

(w; g) � f
#
D(x; g) � f

"
D(x; g) � max

v2@mpf(x)
(v; g): (72)

Thus, the Michel–Penot subdifferential of f at x is also a convexificator of both
functions

h(g) = f
"
D(x; g) and h(g) = f

#
D(x; g):

Since (see (27)) @mpf(x) � @clf(x), the Michel–Penot subdifferential of f at x
is a "smaller" convexificator of the functions f"D(x; g) and f#D(x; g) than the Clarke
subdifferential.

We shall call a convexificatorC+(x) (C�(x)) of the function h(g) = f
"
D(x; g)

(h(g) = f
#
D(x; g)) an upper (a lower) convexificator of f at x. If C(x) is a

convexificator of both functions f
"
D(x; g) and f

#
D(x; g) we say that C(x) is a

convexificator of f at x. Hence, the Clarke and Michel–Penot subdifferentials are
both convexificaters of f at x.

Now we are in a position to define a (CF )-mapping for a locally Lipschitz
function. We say that a mapping C+(C�) : 
! 2IRn

is an upper (a lower) (CF )-
mapping of f on
 if for every x 2 
 the setC+(x)(C�(x)) satisfies the following
inequalities

min
w2C+(x)

(w; g) � f
"
D(x; g) � max

v2C+(x)
(v; g) 8 g 2 IRn (73)

 
min

w2C�(x)
(w; g) � f

#
D(x; g) � max

v2C�(x)
(v; g) 8g 2 IRn

!
:

A mapping C : 
! IRn is called a (CF )-mapping of f is for every x 2 
 the
set C(x) satisfies the inequalities

min
w2C(x)

(w; g) � f
#
D(x; g) � f

"
D(x; g) � max

v2C(x)
(v; g) 8g 2 IRn:

If a function f is quasidifferentiable (but not necessarily Lipschitz), at a point
x one can construct a convexificator (as C = @f(x) _�(�@f(x))) and study the
directional derivative by means of this convexificator (or to find a smaller one if
possible).

As a corollary of Theorem 7.1 we get the following.

THEOREM 9.1. Let f be locally Lipschitz on 
 and let C+ and C� : 
 ! 2IRn

be its upper and lower (CF )-mappings. Then the following properties hold:
1. For a point x� to be a minimum point of f it is necessary that

On 2 C�(x�): (74)
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2. For a point x�� to be a maximum point of f it is necessary that

On 2 C+(x��): (75)

3. If C : 
! 2IRn

is a (CF )-mapping of f and if 0n =2 C(x) then the sets

Q�(x) =

(
g 2 S1

�� max
v2C(x)

(v; g) < 0

)

and

Q+(x) =

(
g 2 S1

�� min
v2C(x)

(v; g) > 0

)

are not empty and Q+(x) = �Q�(x). Moreover, for every g 2 Q�(x) the
following inequalities hold

f
#
D(x; g) � max

v2C(x)
(v; g) < 0

f
"
D(x;�g) � min

w2C(x)
(w; g) = � max

v2C(x)
(v; g) > 0:

COROLLARY 9.1. If C(x) is a (CF ) of f at x and if x is an extremum of f then

0 2 C(x):

REMARK. Now, it is clear why it is of great interest to find a convexificator as
"small" as possible: (i) the set of stationary points (the point satisfying (74) and
(75) will be smaller (and the amount of points suspicious to be extremal points will
be smaller) and (ii) if x is not yet a stationary point we are able to find may be a
larger set of directions of descent and ascent which possess the property. If f is
also d.d. and its h0(x; g) < 0 then h0(x;�g) > 0.

EXAMPLE 9.1. Let x = (x1; x2) 2 IR2; x0 = (0; 0)

f(x) = jx1j � jx2j+
1
2
x1:

The function f is directionally differentiable and Lipschitz on IR2. It is easy to
check that

f 0(x0; g) = jg1j � jg2j+
1
2
g1; (76)

where g = (g1; g2). The function f is differentiable everywhere except the points
where either x1 = 0 or x2 = 0 or both. Therefore by making use of (19) we can
get (see Figure 2)

@clf(x0) = co
��

�1
2
; 1
�
;

�
�1

2
;�1

�
;

�
3
2
; 1
�
;

�
�3

2
;�1

��
:
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Figure 3.

The function f is also quasidifferentiable on IR2 and one can take the following
pair of sets as a quasidifferential of f at x0:

Df(x0) = [@f(x0); @f(x0)];

where

@f(x0) = co
��

3
2
; 0
�
;

��1
2
; 0
��

;

@f(x0) = co f(0; 1); (0;�1)g :

Since (see Figure 1) conditions (320) and (32") are not satisfied, the point x0 is
neither a minimum point of f , nor its maximum point. At the same time the point
x0 is a Clarke-stationary point since the necessary condition (20) holds at x0. It
follows from (34) and (19) that the function h(g) = f 0(x0; g) has the following
Clarke subdifferential at g0(0; 0):

@clh(g0) = co
��

�1
2
; 1
�
;

�
�1

2
;�1

�
;

�
3
2
; 1
�
;

�
�3

2
;�1

��

i.e.

@clh(g0) = @clf(x0):
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Figure 4.

We can get the same results applying the formula (36):

@f(x0) _�(�@f(x0) = co
��

�1
2
; 1
�
;

�
�1

2
;�1

�
;

�
3
2
; 1
�
;

�
�3

2
;�1

��
:

Since @mpf(x0) = @clh(g0), this implies that

@mpf(x0) = @clf(x0)

and the necessary condition (29) holds as well (that is, x0 is a stationary point in
the sense of Michel–Penot).

The set @clf(x0) = @mpf(x0) = @f(x0) _�@f(x0) is a convexificator of f at x0.
However, it is easy to see that the sets

C1 = co
��

�1
2
; 1
�
;

�
3
2
;�1

��
; C2 = co

��
�1

2
;�1

�
;

�
3
2
; 1
��

are also convexificators. Let us check, e.g., that C1 is a convexificator of f at x0 :

h(g) = f 0(x0; g) = jg1j � jg2j+
1
2
g1:

Note that

min
v2C1

(v; g) = min
�
�1

2
g1 + g2;

3
2
g1 � g2

�
(77)

max
v2C1

(v; g) = max
�
�1

2
g1 + g2;

3
2
g1 � g2

�
: (78)

The following four cases are possible
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1. g1 � 0; g2 � 0
2. g1 � 0; g2 � 0
3. g1 � 0; g2 � 0
4. g1 � 0; g2 � 0

In case (1): h(g) =
3
2
g1 � g2. Then, clearly

min
v2C1

(v; g) � h(g) � max
v2C1

(v; g): (79)

In case (2): h(g) = g1 + g2 +
1
3
g1 =

3
2
g1 + g2:

Since g1 � 01; g2 � 0;�1
2
g1 + g2 � 0;

3
2
g1 � g2 � 0 and

min
v2C1

(v; g) = �1
2
g1 + g2 �

3
2
g1 + g2 = h(g): (80)

Analogously,

max
v2C1

(v; g) =
3
2
g1 � g2 �

3
2
g1 + g2 = h(g) (81)

(80) and (81) imply again (29).

In case (3): h(g) = �g1 � g2 +
1
2
g1 = �1

2
g1 � g2:

Since g1 � 0; g2 � 0, �1
2
g1 + g2 � 0;

3
2
g1 � g2 � 0 and so,

min
v2C1

(v; g) =
3
2
g1 � g2 � �1

2
g1 � g2 = h(g) (82)

max
v2C1

(v; g) = �1
2
g1 + g2 � �1

2
g1 � g2 = h(g) (83)

(82) and (83) yield (79).

In case (4): h(g) = �g1 + g2 +
1
2
g1 = �1

2
g1 + g2:

It is clear from (77) and (78) that

min
v2C1

(v; g) � �1
2
g1 + g2 = h(g) � max

v2C1

(v; g): (84)

Thus, in all the cases (1)–(4) we get (79), i.e. C1 is a convexificator.
In a similar way we can prove that C2 is a convexificator as well. These

convexificators are minimal. On the other hand, C1 � @mpf(x0); C2 � @mpf(x0)
and C1 6= @mpf(x0), C2 6= @mpf(x0) that is, these convexificators are "smaller"
than @mpf(x0).
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Let us takeC1. Since (see Figure 3) 02 =2 C1, the point x0 is not a stationary one
(and, thus, is "out of the list of suspicious points"). The set Q�

1 (see (49)) consists

of unit vectors located between the points
�
� 2p

5
;� 1p

5

�
and

�
� 2p

13
;� 3p

13

�
(these two points don’t belong to Q�

1 ). Using the relation (48), we can get Q+
1 (see

(47)).
Consider now the set C2. Since (see Figure 4) 02 =2 C2, the point x0 is not

a stationary. The set Q�
2 for this convexificator is the set of unit vectors located

between the points
�
� 2p

5
;

1p
5

�
and

�
� 2p

13
;

3p
13

�
.

Thus, using the convexificators C1 and C2 we conclude that the set Q� =
Q�

1 [Q�
2 has the property:

h(g) < 0; h(�g) > 0 8 g 2 Q�:

THEOREM 9.2. (Mean-Value Theorem). LetC+ and C� : 
! 2IRn

be an upper
and a lower (CF )-mappings of f , respectively. If the interval co fx1; x2g � 
 then
there exists an 
 2 (0; 1) such that at least one of the following statements hold
1. there exists v 2 C+(x1 + 
(x2 � x1)) such that

f(x2)� f(x1) = (v; x2 � x1) (85)

2. there exists v 2 C�(x1 + 
(x2 � x1)) such that (85) is valid.

Proof. Let us consider the function

h(�) = f(x1 + �(x2 � x1))� f(x1) + �[f(x1)� f(x2)]:

Since h(0) = h(1) = 0, there exists a 
 2 (0; 1) such that the function h attains
its extremal value on the interval [0,1] at 
. Let, for example, 
 be a minimum
point of h. Then the necessary condition for a minimum

h
#
D(
; g) � 0 8 g 2 IR (86)

holds, where

h
#
D(
; g) = lim inf

�#0

h(
 + �g)� h(
)

�

= lim inf
�#0

1
�
[f(x1 + (
 + �g)(x2 � x1))� f(x1 + 
(x2 � x1))

+�g(f(x1)� f(x2))] = f
#
D(x1 + 
(x2 � x1); g(x2 � x1))

+g[f(x1)� f(x1)]: (87)

Let x2 = x1 + 
(x2 � x1);� = x2 � x1.
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If g = +1 then

f
#
D(x
 ;�) + f(x1)� f(x2) � 0: (88)

If g = �1 then

f
#
D(x
 ;��)� [f(x1)� f(x2)] � 0: (89)

The inequalities (88) and (89) yield

f
#
D(x
 ;��) � f(x2)� f(x1) � f

#
D(x
 ;�): (90)

By the definition of a convexificator

min
w2C�(
)

(w; g) � f
#
D(x
 ; g) � max

v2C�(
)
(v; g); (91)

where C�(
) = C�(x1 + 
(x2 � x1)).
It follows from (90) and (91) that

min
v2C�(
)

(v; x2 � x1) � f(x2)� f(x1) � max
v2C�(
)

(v; x2 � x1): (92)

Since the function (v; x2 � x1) is continuous in v, it follows from (92) that for
some v 2 C�(
) we get f(x2)� f(x2) = (v; x2 � x1).

Similarly, if 
 is a maximizer of h we employ the necessary condition for a
maximum:

h
"
D(
; g) � 0 8 g 2 IR

and follow the same line of arguments as above.

COROLLARY 9.2. If C : 
 ! 2IRn

is a (CF ) mapping of f then there exist a

 2 (0; 1) and v 2 C(x1 + 
(x2 � x1)) such that (85) holds

This result also follows from Theorem 3.1 of [17] in the locally Lipschitz case.

REMARK. As corollaries we get the Clarke mean-value theorem [1] and the
Michel–Penot mean-value theorem [12].

For related mean-value theorems which employ the Clarke and Michel–Penot
subdifferentials see [17]. The main-value theorem of [17] was proved using a
two-sided upper convex approximation which differs from the upper and lower
convexicators, examined here.
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9. Ioffe, A.D. (1993), A Lagrange multiplier rule with small convex-valued subdifferentials for
nonsmooth problems of mathematical programming involving equality and non-functional con-
straints, Math. Progr., 58, pp. 137–145.

10. Jeyakumar, V. (1987), On optimality conditions in nonsmooth inequality constrained minimiza-
tion, Numer. Funct. Anal. and Optim., 9 (5 & 6), pp. 536–546.

11. Kuntz, L. and Scholtes, S. (1993), Constraint qualifications in quasidifferentiable optimization,
Mathematical Programming, 60, pp. 339–347.

12. Michel. P. and Penot, J.-P. (1984), Calcus sous-differential pour les fonctions lipschitziennes et
non-lipschitziennes, C.R. Acad. Sc. Paris, Ser.I 298, pp. 269–272.

13. Pschenichniy, B.N. (1980), Convex Analysis and Extremal Problems, Nauka, Moscow.
14. Rubinov, A.M. and Akhundov, I.S. (1992), Difference of compact sets in the sense of Demyanov

and its application to nonsmooth analysis, Optimization, 23, pp. 179–188.
15. Treiman, J.S. (1988), Shrinking generalized gradients, Nonlinear Analysis TM & A., 12, pp.

1429–1449.
16. Rockafellar, R.T. (1970), Convex Analysis, Princeton University Press, Princeton N.J.
17. Studniarski, M. and Jeyakumar, V. (1993), A generalized mean-value theorem and optimality

conditions in composite nonsmooth minimization, Nonlinear Analysis TM & A, 24(6), 883–894.
18. Xia, Z.-Q. (1987), On mean-value theorems in quasidifferential Calculus, J. Math. Res. and

Exposition, D.I.T., Dalian (China) 4, pp. 681–684.


