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Abstract. Certain useful basic results of the gradient (in the smooth case), the Clarke subdifferen-
tial, the Michel-Penot subdifferential, which is also known as the "small" subdifferential, and the
directional derivative (in the nonsmooth case) are stated and discussed. One of the advantages of
the Michel—-Penot subdifferential is the fact that it is in general "smaller" than the Clarke subdif-
ferential. In this paper it is shown that there exist subdifferentials which may be smaller than the
Michel—Penot subdifferential and which have certain useful calculus. It is further shown that in the
case of quasidifferentiability, the Michel-Penot subdifferential enjoys calculus which hold for the
Clarke subdifferential only in the regular case.
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1. Introduction

With the discovery of the convex subdifferential (see[16]) and the subdifferential
of a max-type function (see, e.g. [3,4]) it was generally understood that in the
nonsmooth case it is not sufficient to employ a singleton — the gradient — to
study properties of a function. Since the subdifferentials (in the mentioned cases)
appeared to be convex setsit was agreat temptation to look for similar convex ones
in ageneral nonsmooth case. Pschenichnyi [13] devel oped upper convex and lower
concave approximations. Theintroduction of the Clarke sub-differential [1] wasa
great breakthrough, and a safari season started in the Wilderness of Endolandia.t
Many different generalizations of the concept of gradient have been proposed. The
most productive hunter (asto the authors' knowledge) is J.-P. Penot. He discovered
and studied many convex objects, one of the most promising and popular being
that of “small subdifferential” (nurtured jointly by P. Michel and J.-P. Penot [12]).
Our aim istwo-fold:

(a) to demonstrate that in some casesthere exists a Calculus for “small” subdiffer-
entials; (b) to show that, like akangaroo, the small subdifferential containsin itself
even asmaller one (or smaller ones).

* Research of the first author was partially supported by grants from the Australian Research
Council and the G. Soros Foundation (p.468)
1 The Land of NDO-Nondifferentiable Optimization — the term introduced by M. Balinski
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Indeed, the Wilderness of Endolandiais still full of surprises and a persistant
hunter may be lucky.

In the paper only the finite-dimenstional caseis considered. We discuss mostly
Lipschitz directionally differentiable functions. After abrief review of the proper-
ties of the gradient in the smooth case we show that in the nonsmooth case several
tools are needed to solve the problems which in the smooth case are solved by
means of the gradient. In particular, we indicate several problemswherethe Clarke
subdifferential can be employed for solving them. Then we observe that the same
problems can be treated by means of the Michel-Penot subdifferential which in
some casesis “smaller” than the Clarke one and, hence, provides sharper results.
It is also shown that for the Michel—Penot subdifferentials there exists (in the case
of Lipschitz quasidifferentiable functions) a Calculus (exact rules— equalities—for
computing “small” subdifferentials).

Using theideaof convexificator [ 7,8] we can solvethe same problemswhich are
solved by means of the Clarke and Michel—Penot subdifferentials. It turns out that
both subdifferentials (the Clarke one and Michel-Penot one) are convexifactors
and have been used just in this capacity. In some casesit is possible to find a con-
vexificator (or convexificators) which is (are) even smaller than the Michel—Penot
one. For this purpose the notion of minimal convexificator seems to be promising
[7,8]. It opend the way for a more thorough study of nonsmooth functions.

2. TheGradient: ThePrincipal Tool in Smooth Analysis

We begin by recalling some properties of the gradient —the principal tool in smooth
anaysis.

Let afunction f : 2 — IR be continuously differentiable on 2 where (2 C IR"
is an open set. Then the gradient mapping f' : 2 — IR™ is defined and continuous
on Q. Fix any z € Q. By means of the gradient oneis able:

1. Tofind the directional derivative of f at x in any direction g :

f(a,g) = lim LTI =T _ iy W

al0 o

2. To construct afirst-order approximation of f near x:

flz+A) = flz) + (f'(z),A) + 0:(A) 2
wherefor each A,
Ol 3)
o al0

3. To formulate necessary conditions for an extremum:
3a For apoint z* € €2 to be aminimum point of f it is necessary that

fl(x*) =0, (4)
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3.

3b: For apoint z** € ) to be a maximum point of f it is necessary that
f'@™) =0. (5)

Note that the conditions (4) and (5) coincide and that a point z, satisfying (4)
and (5) is called a stationary point.

. Tofind directions of the steepest descent and ascent:
!
4a: the direction g = —% is the steepest descent direction.
T
f'(z)

4b: the direction g1 = is the steepest ascent direction.

I1F" ()]

Note that in the smooth case there exists only one steepest descent direction
and only one steepest ascent direction and that
9o = —g1. (6)

The following aso hold:

f f'(z,9) < Othen f'(z,—g) > O, that is, if afunction f is decreasing in

somedirection it is necessarily increasing in the opposite direction, and, by the
way, dueto (1),

fl(z,9) = —f'(z,—g). )

N f'(z,g) < Othen f'(2', g) < Oforall 2’ near thepoint z (that is, thedirection

g isarobust direction of descent: if f isdecreasing at = in adirection g, itis
also decreasing in the same direction at al points from some neighbourhood
of z). The sameis true with respect to ascent directions.

. Thefunction F(z,A) = (f'(z),A) = f'(z, A), which isan approximation of

theincrement f(x + A) — f(z), is continuous as a function of z.

. The following mean-value theorem is valid: If the interval co{z1,z2} C Q

then there existsand « € (0, 1) such that
f(x2) = f(w1) = (f'(z1 + a(z2 — 71)), 72 — 21). (8)

. Itisalso understood (usually not stated explicitly) that one can study the above

properties (and many others) by meansonly (n + 1) numbers (the value of f
at x and n partial derivatives constituting the gradient). Therefore it is only
necessary to compute and to store the mentioned (n + 1) numbers.

Directionally Differentiable Functions

Now let usassumethat f : 2 — IR isdirectionaly differentiable (d.d.) on Q2 (i.e.,
the limit (1) exists and is finite for every g € IR") and the directional derivative
is continuous as a function of direction. Since f’(z, g) is positively homogeneous
(p.h.) of degreel,i.e.

f'(z,Ag) = Af'(z,9), VA>0, (9)
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it issufficient to consider only g € S1 = {g € IR"| ||g|| = 1}.

Examining problems 1-8 of Section 2, we observethat thedirectional derivative
allowsus

(1) to find the directional derivative (by the definition),

(2) to construct afirst-order approximation,

flz+A)=f(z)+ f'(z,4) +0,(A) (10)

where 0, (A) satisfies (3),
(3) to formulate necessary conditions for an extremum; thus,
(3a) for apoint z* € Q to be aminimum point of f it is necessary that

f'(z*,9) >0, VgelR" (12)

f'(z*,9) >0, Vg#0, (12)

then z* isastrict local minimum point.
(3b) for apoint z** € £ to be amaximum point of f it is necessary that

f'(z**,9) <0 VgelR™ (13)

f(z*,9) <0 Vg#0, (14)

then z** isastrict local maximum point.

Note that necessary conditionsfor a maximum and a minimum do not coincide
any more and sufficient conditions (12) and (14) have no equivalencein the smooth
case, they are just impossible.

(4) to define directions of stegpest ascent and descent; however, they are not
necessarily unique any more, and the property similar to (6) doesn’t hold now. The
properties (5) and (7) of Section 2 don’t hold any more.

(8) to formulate the following mean-value property that for for the interval
co{z1, 2} C , thereexistsan a € (0, 1) such that

f(@2) — f(21) = f'(z1+ a(z2 — 21), 22 — 21). (15)

4. Locally Lipschitz Functions
Assumenow that f : 2 — IRislocally Lipschitz. To preserve something similar to
properties (5) - (7), one can employ upper and lower Clarke directional derivatives:

fla,g) = limsup  [f(a + ag) — f(")] (16)

[a,a’]-+ [0, 2] ¥
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file.g) = limint 2[5+ ag) - ()] a7)

[a,2']—=[0F, 2]

If fislocaly Lipschitz then the limitsin (16) and (17) exist and are finite and the
following important properties hold:

"
b = ma)( ) b
fa(z,9) L fm(v 9)
! ,g) = min ,g), 18
filwg) = min (w.9) (18)
where

Oaf(z) = cofv € R"| Iz}t 2, — , m € T(f), f'(zk) = v}, (19)

T(f) is the set of points of 2 where f is differentiable (since f is locally Lip-
schitz, f is differentiable amost everywhere). The set 9., f (z), called the Clarke
subdifferential of f at x, isanonempty, convex and compact set (see[1]).

The inclusion 0 € 9., f(x) is a necessary optimality condition (both for a
minimum and a maximum). If f isaso d.d. and 0 € 9,,f(x), then there exist
directions ¢'s such that

flz,g) <0 (20)

Itisclear from (18) that fil(x, —g) = —fT(x,g) > 0and now it is easy to seethat

cl

f'(z,9) < fi(x,9)< 0, f'(z,~g) > fii(z,9) > 0. (21)

Hence, the property (21) isareplacement for property (5) in the smooth case. Thus,
if (21) holds, g isadescent direction and g; = —g is an ascent direction.

Itisalso possibleto show that if £, (v, g) < O, then f'(z,g) < Oand f'(z',g) <
0 for al =’ near z, i.e. this property is similar to property (6) in the smooth case
(and, hence, g is a robust direction of descent). An analogous property holds if
f4(v,g) > 0 (then g isarobust direction of ascent).

cl

Thefunctions chl(x, g)and fil(x, g) are, ingeneral, discontinuous (aswell asthe
set-valued mapping 9, f : IR™ — 2R"). A mean-value theorem can be formulated
by means of the Clarke directional derivatives (see[1]).

To sum up, we observethat in the locally Lipschitz non-smooth case it appears
that we need different tools (namely, the directional derivative and the Clarke
derivatives) to solve problems similar to the ones stated in Section 2 for a smooth
function. Thusthereis no flexible tool such asthe gradient in the Nonsmooth case.

It is worth noting that all the above results are applicable only if oneis able to
compute numerically the mentioned function values and gradients. In the sequel
we shall discuss the possibility of constructing a tool which answers the same
guestions as the Clarke subdifferential does and which isin some sense simpler.
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5. TheMichel-Penot Subdifferential
Michel and Penot proposed the following generalized derivative (see[12])
. 1
ol 9) = Sup {llmsup—[f(w +alg+4q) - flz+ aq)]} - (22)
gER™ al0 @

We shall call it the Michel—Penot upper derivative of f at = inthe direction g. The
quantity

ftotorg) = int Limint 217+ alg +0) — f (@ + )} 23

will bereferred to asthe Michel—Penot lower derivative of f at x inthedirection g.
If fislocally Lipschits then there exists a convex compact set dmp f () such that

) -

fmp(z,9) ve%’v‘(m)(“’ 9)s (24)
! —  mi

fmp(fag) nglnL?'(I)(w’g) (25)

Recall that if f is also d.d. then Oypf(x) is the Clarke subdifferential of the
function h(g) = f'(z,g) a g = 0y,. The set Oypf(x) is often referred to as the
small subdifferential. It is known in general that

Ompf (z) C Ou f () (26)
and in some cases
Ompf (z) # Ouf (2). (27)

At the same time, it preserves some of the properties of d,;f(z). Namely, the
condition

On, € Ompf (2) (28)

isanecessary condition for an extremum (a minimum and amaximum alike). The
condition (28) is stronger than the condition that O € 9., f () if (28) holds.
If fisd.d. and (28) isnot yet satisfied then there exist directions g’s such that

fol(@,9) <0, (29)
and for such adirection one has

f'(z,9) < fhplz,9) <0, (30)
while

f'(@,—9) > fip(z,—9) = — fip(@,9) >0, (31)
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i.e. al the directions satisfying (29) are descent directions, while the opposite
directions are ascent ones. Unfortunately, the robustness of a direction satisfying
(29) and (30) is not guaranteed. This is because the mapping dmpf (unlike the
mapping d.; f) is not upper semicontinuousin X.

Hence, the small subdifferential of Michel and Penot has properties similar to
te ones of the Clarke subdifferential. Since Ompf () is "smaller” than 0, f (), it
has some preferences: (i) the necessary condition (28) is stronger; (ii) the family
of directions satisfying simultaneously (30) and (31) isin general greater than the
similar family obtained by means of the Clarke subdifferential.

Another advantage of the small subdifferential is the fact that if f is quasi-
differentiable, one can construct Calculus for computing "small" subdifferentials.

The notion of small subdifferential has been used by many authors to get new
results (see [2, 17, 9]). Most generalizations of the concept of gradient are also
employed to get new "mean-value theorems" (see[11, 18, 1]).

6. Quasidifferentiable Functions: Calculusfor the Michel-Penot
Subdifferentials

Let the function f be Lipschitz on an open set 2 C IR" and quasidifferentiable at
r € (, i.e itisdirectionaly differentiable at = and there exists a pair of convex
compact sets df (), df (x) C IR" such that, for each g € IR"

f(z,9) = max (v,g) + min (w,g). (32)
veIf(x) wedf(z)

The pair of sets Df (z) = [0f (z),0f ()] is caled a quasidifferentia of f at .
There existsawell-devel oped Calculusfor computing quasidifferentials (see[6,7])
which is ageneralization of the classical "smooth" Differential Calculus.

It is convenient to describe necessary optimality conditions in terms of quasi-
differentials. For example, a necessary condition for a minimum takes the form

—0f(¢*) C Of(a") (32)
and a necessary condition for amaximum s
—0f (™) C 9f (z™). (32")

Let A C IR" and B C IR" be convex compact setsand let p4(g) and pp(g) be
their support functions

palg) = maxX(v,g), pr(9) = max(v, g).
These functions are almost everywhere differentiable. By definition

A-B = clco{Vpal(g) — Vpr(g)lg € T} (33)
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Figure 1.

where T' is any set of full measure of differentiability points of p4 and pp. The
difference of setsjust defined is consistent: If

A=B+C then A-B=C.

Asacorollary, weget A~ A = O,.
The difference — wasintroduced in [5] and studied by Rubinov and Akhundov
[17]. It was shownin [17, 7] that

where h(g) = f'(z, g).
It was demonstrated in [11,12] that if f islocally Lipschitz and directionally
differentiable then

8mpf (:E) = aclh(on) (35)
Combining (34) and (35) we arrive at the following result.

THEOREM 6.1. If f islocally Lipschitz and quasidifferentiable at a point x, then
Ompf (z) = Of ()~ (—3f (x)). (36)

REMARK. Since there exists a Calculus for quasidifferentiable functions, there
existsa Calculusfor the Michel—Penot subdifferentials: first find aquasidifferential
of f a x and then apply Theorem 6.1. (of course, f is Localy Lipschitz and
guasidifferentiable at z).

The connection between the Clarke subdifferential and the quasidifferential is
discussedin [7, sect.4, ch.3].
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7. Convexificatorsof a Positively Homogeneous Function

Let b : IR® — IR be a positively homogeneous (p.h.) (of degree 1) function. We
say that a convex compact set C' C IR" isaconvexificator (CF) of h if

i < < "
min(w,g) < h(g) < maX(v,g), Vg€ R (37)

Note that max and min in (37) are taken over the same set C'!

If h is bounded on S; = {g € IR"|||g|| = 1} then there is no problem
of existence of a convexificator: any ball centered at the origin with the radius
sufficiently large can be taken as a convexificator. The notion of convexificator
wasintroduced and studied in [8] (seeaso[7]). Note that in many applicationsthe
function i isoften taken assomekind of ageneralized directional derivative.

THEOREM 7.1. The following properties hold:

1. If
h(g) >0 VgelR" (38)
then0,, € C.
2. If
h(g) >0 Vg#0, (39)
then
0, € intC (40)
3 If
h(g) <0 gelR" (41)
then
0, €C (42)
4. |If
h(g) <0 Vg#0, (43)
then
0, € intC (44)
5 If
O, ¢ C (45)
then the sets

@ ={g e simaxv.g) <0f (46)
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Q" = {g € 51| g;ig(v,g) > 0}

are nonempty and

Q" =-Q".

Proof.
1. If (38) holdsthen (37) implies

> "
rvneaé((v,y) >0 VgeR

The inequality (49) isequivalent (see[4,6]) to 0, € C.
2. Theinequalities (39) and (37) imply

max(v,g) >0 Vg # On.
The inequality (50) is equivalent (see[4,6]) to the inclusion
0, € intC.

3. Analogeously, the inequalities (41) and (37) imply
min(w,g) <0, VgeR®

which is equivalent to
> n
max(v,9) 20, Vg e€R",

and, hence, 0,, € C.

(47)

(48)

(49)

(50)

(51)

(52)

(53)

4. Theinequalities(43) and (37) imply theinequality min,cc(w,g) <0, Vg #
0, which is the same as max,cc(v,9) > 0 V g # 0,, and, therefore,

0, € intC.
5. If (45) holdsthen
lo* ]l = min{lv]| >0 (54)
It then follows from necessary conditions for a minimum that
< _ *
max(v, go) < —[lv”[| <O, (55)
where .
go=——. (56)
[[o |
Thus, the set @~ is not empty. The inequality (55) also yields
. S [l*
min(w,g1) > [|v*]| > 0 (57)
with g1 = —go. Hence, the set Q— is also not empty. It is clear from the

definitions (49) and (50) that Q™ = — Q™.
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COROLLARY 7.1. If (45) holds then (37) implies
h(g) <0, VgeQ@, (58)
h(g) >0, VYgeQT, (59)
and (59) can be rewritten in the form
h(—g) >0 VgeQ . (60)

REMARK. The inclusion 0, € C doesn’'t necessarily imply that one of the
inequalities (38) or (41) holds, as well as the inclusion 0, € int C' doesn't
necessarily mean that one of the inequalities (39) or (43) holds. However, if A is
in addition, convex then the condition 0 € C' becomes a necessary and sufficient
condition for the inequality

h(g) >0 VYgeclR"

8. Minimal Convexificators

It follows from definition (37) that a convexificator is not uniquely defined: If C'
is(CF) of h thentheset C; = A 4+ C (with A an arbitrary convex compact set) is
asoa(CF)of h.

We say that C* isaminimal convexificator of h if there exists no other convex
compact set C' suchthat C' ¢ C*, C # C* and C'isa(CF) of h.

EXAMPLE8.1. Let h : IR” — IR be a convex positively homogeneous function,
then there exists a (unique) convex compact set A C IR" such that

h(g) = max(v, g). (61)
Clearly AisaCF of h. ThisCF isaminima one (and unique!).

EXAMPLE8.2. Let h : IR" — IR be aconcave positively homogeneous function,
then there exists a (unique) convex compact set B C IR™ such that

h(g) = min(w, g). (62)
Clearly, Bisa(CF). Itisaminimal one (and unique!).
EXAMPLE 8.3. Let h : IR? — IR be defined by

h(g) = h(g1,92) = |g1| — |g2|-
It is not difficult to check that the set C' = co{(1,1),(1,-1),(-1,1),(-1,-1)}
isa(CF):

i < < .
min(w, g) < h(g) < max(v, g)
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N

Figure 2.

Take now the sets
C]_ZCO{(]., 1)7(_17_1)}7 CZ:CO{(_17 1)7(17_1)}'
Direct calculations show that
' < h(g) < max
uf)glgl(w,g) <h(g) < Uecl(v,g)
i < h(g) <
min (w, g) < h(g) < max(v, g),
i.e. the sets C; and C> are convexificators as well, and since C; ¢ C,C, C C

we conclude that C' is not aminimal C'F', however, the sets C1 and C, are both
minimal.

Now one can develop a Calculus for computing convexificators. For example, the
following property holds.

THEOREM 8.1. Iffunctionshs, hp arep.h., A1, A2 € IR, C1, Cy areconvexificators
of h1, ho, respectively, then the function h = A1h1 + A2hy isalso p.h. and the set
C = \C1 + \oC5 isa convexificator of h.

Proof. It suffices to prove the required property for functions h = hy + ho
and h = A\hj. If hy, hy are positively homogeneous functions then the function
h = h1+ hoisasop.h.andif C1, C, are convexificatorsof h1 and ho respectively,
thentheset C = C1 + Cy = {v = v1 + vovy € C1,v2 € Co} (the Minkowski
sum) isa(CF) of h. Indeed, we have

i < hi(g) < Vg € IR" 63
min (w, g) < ha(g) < max(v,g), ¥g € (63)
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i < ho(q) < Vg € IR". 64
min (w, g) < ha(g) < Max(v,g), ¥g € (64)

It follows from (63) and (64) that

min (w,g) + min (w, g) < ha(g) + h2(g) < max(v, g) + max(v, g). (65)
weCy Cy veCy

weCq S

Since
min min = min = min
wecl(w,g) + wecz(w,g) wecl+cz(w,g) wec(w,g),
max max = max = max
Uecl(v,g) + vecz(v,g) Uecﬁcz(v,g) Uec(v,g),

theinequalities (65) yield the required property.
Now let by bep.h, A € IR,C1 bea (CF) of hy. Thefunction h = Ahg isp.h.
for any A € IR. We have

i < < .
u[glgl(w,g) < hi(g) < 52635(%9) (66)

If A > 0then (66) implies

A min < Mh < A max . 67
wEICl(w’g) - 1(9) - veC’l(v’g) ( )
Since

A min = min
min(w,g) = min_(w,g),

Amax(v,g) = max (v,g),

veC, vE(ACY)
(67) yields
min(w, g) < hlg) < max(v,g), (68)
where

C=X\C1= {U = )\1)1|’U]_ € C}
If A < 0 then we get from (66)

i > > .
)\ur)glgl(w,g) > Mha(g) > Azrjgac)i(v,g) (69)
SinceA <0
Amin(w,g) = max (v,g),  Amax(v,g) = min (w,g),

weCy vE(ACY) veCy we(AC1)
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therefore (69) again yields
i < <
Lpelg(w,g) <h(g) < g@ag(v,g)
with C = \C1.

REMARK. If C1, Cy are minimal (C'F) of the functions h1, ho, respectively, the
set C' = C1 + Cy isnot necessarily aminimal (C'F’) of thefunction h = hjy + ho.

EXAMPLE 8.4. Let hy, hy : IR> — IR be defined as follows

hi(g) = |91, h2(g) = —|g2|.

The function hj is convex, and the set C; = co{(1,0),(—1,0)} is a mini-
mal (and unique!) (C'F) of hy The function h, is concave and the set C) =
co{(0,1), (0,—1)} isitsminimal (and unique!) (C'F). The set

C =01+ Cp=co{(1,1),(1,-1),(-1,1),(—1,1)}

isa(CF) of thefunction h = h1 + hy but not aminimal one (see Example 8.3).

9. Convexificatorsfor Locally Lipschitz Functions

Let the function f : Q — IR belocally Lipschitz on an open set 2 C IR™. Thenits
upper and lower Dini derivatives

4 L flz +ag) — f(z)
b@y%Jmﬁp "

and

f(z+ag) — f(r)

«

J, i .
f’D(wag) - IITi,IOnf

are bounded and continuousin g. By the definition (see (16), (17)) we get

Fh(@,9) < fh(z,9) < fh(z.g) < fi(z,9). (70)
Using (18) and (19) we get
Lomin (w,g) < Fh(,9) < fhiz,g) < e (v,9). (72)

Hence, the Clarke subdifferential of f at x isaconvexificator of both functions

h(g) = fh(z,9) and h(g) = f5(z,g).
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From the definitions (23) and (24) and the formulas (25) and (26) we conclude that

min  (w,q) < fi(z,9) < fh(z,9) < max (v,q). 72

weampf(x)( g9) < fD( g) < fD( g) < ve@mpf(:r)( 9) (72)

Thus, the Michel—Penot subdifferential of f at x is also a convexificator of both
functions

h(g) = fh(z,9) and h(g) = f5(z,g).

Since (see (27)) Ompf(x) C Ou f (), the Michel-Penot subdifferential of f at =
isa"smaller” convexificator of thefunctions £}, (z, g) and f}, (z, g) than the Clarke
subdifferential.

We shall call aconvexificator C*(z) (C~(x)) of thefunction h(g) = f;g(g:,g)

(h(g) = f%(:}:,g)) an upper (a lower) convexificator of f at z. If C(z) is a
convexificator of both functions f;g(g:,g) and f%(:}:,g) we say that C(z) is a
convexificator of f at x. Hence, the Clarke and Michel-Penot subdifferentials are
both convexificatersof f at z.

Now we are in a position to define a (C F)-mapping for a locally Lipschitz
function. We say that amapping C*(C~) : © — 2R" isan upper (alower) (CF)-
mapping of f onQ if forevery z € Qtheset C*+(z)(C (x)) satisfiesthefollowing
inequalities

Lmin (w.g) < fp(e,9) < max (v.g) VgeR (73)

in (w,g) < fp(z,9) < ,9) VgeR").
<w£2'—”(z)(w 9) < fplz,9) < Uerg%(v 9) Vg )
A mapping C : Q2 — IR" iscalled a(C F)-mapping of f isfor every z € 2 the
set C'(x) satisfiesthe inequalities

wgnci,?z)(w,g) < fp(x,9) < fh(z,9) < vgncaé)(v,g) Vg € R".
If afunction f is quasidifferentiable (but not necessarily Lipschitz), at a point
z one can construct a convexificator (as C = df (z)—(—0f(x))) and study the
directional derivative by means of this convexificator (or to find a smaller one if
possible).

Asacorollary of Theorem 7.1 we get the following.

THEOREM 9.1. Let f belocally Lipschitzon Q and let Ct and C— : Q@ — 2R”
beits upper and lower (C'F)-mappings. Then the following properties hold:
1. For apoint z* to be a minimum point of f it is necessary that

0, € C~(z*). (74)
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2. For apoint z** to be a maximumpoint of f it is necessary that
On € Ot (2*). (75)

3. IfC:Q — 2R"isa(CF)-mapping of f andif 0, ¢ C(z) then the sets

Q (z) = {g € S| Ugn%)(v,g) < o}

and
QT (z) = {g € S’l| min (v,g) > O}
veC(x)

are not empty and Q" (z) = —Q~ (z). Moreover, for every g € Q~(z) the
following inequalities hold

e < max <0
fD(:Eag) — ’UGC(I)(U’g)

T(z.—q)> mi S > 0.
fp(z, 9)—w2“c'~?x>(w’9) vgncaé)(v,g)

COROLLARY 9.1. If C(z) isa(CF) of f at z and if 2 isan extremum of f then
0e C(x).

REMARK. Now, it is clear why it is of great interest to find a convexificator as
"small" as possible: (i) the set of stationary points (the point satisfying (74) and
(75) will be smaller (and the amount of points suspiciousto be extremal pointswill
be smaller) and (ii) if  is not yet a stationary point we are able to find may be a
larger set of directions of descent and ascent which possess the property. If f is
asod.d. anditsh/(z,g) < Othen h/(xz,—g) > 0.

EXAMPLE9.1. Let z = (1, 22) € IR 29 = (0,0)

1
f(z) = |z1| — |@2| + 571

The function f is directionally differentiable and Lipschitz on IR?. It is easy to
check that

1
f'(zo0,9) = lg1| — lg2| + 591 (76)

where g = (g1, g2). The function f is differentiable everywhere except the points
where either 1 = 0 or 2, = 0 or both. Therefore by making use of (19) we can
get (see Figure 2)

wr=eo{ (). (3. G9)(3)
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Figure 3.

Thefunction f isalso quasidifferentiable on IR? and one can take the following
pair of sets as a quasidifferential of f at xo:

Df (o) = [8f (x0), f (x0)],

where
01 (w0) = 0 {(5.0).(50) }.
df(z0) = co {(0,1),(0,~1)}.

Since (see Figure 1) conditions (32') and (32") are not satisfied, the point zg is
neither aminimum point of f, nor its maximum point. At the same time the point
xo IS a Clarke-stationary point since the necessary condition (20) holds at xg. It
follows from (34) and (19) that the function h(g) = f'(zo,g) has the following
Clarke subdifferential at go(0, 0):

= {(-43). (39 (29 (39)

deth(go) = Oerf (w0)-
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We can get the same results applying the formula (36):

oot = {(53).(54).(39)-(39)

Since Oy, f (z0) = Oeh(go), thisimplies that
ampf(xO) = aclf(xO)

and the necessary condition (29) holds as well (that is, zo is a stationary point in
the sense of Michel-Penot).

Theset 9,1 f (o) = Ompf (v0) = Of (z0)—0f (z0) isaconvexificator of f at zo.
However, it is easy to seethat the sets

- () (3} - (3. (3

are also convexificators. Let us check, e.g., that C; isaconvexificator of f at g :

1
h(g) = f'(z0,9) = |g1| — |g2| + 591

Note that
min(v,g) = min {_}91 + 92, §91 — 92} (77)
veCy 2 2
max(v,g) = max {—}gl + 92, §91 — 92} - (78)
veCy 2 2

Thefollowing four cases are possible
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912079220
91>0,92<0
91<0,92>0
91<0,92<0

Incase (1): h(g) = ggl — g2. Then, clearly

pODNPE

min <h < max .
vGCl(v,g) < h(g) < vGCl(v,g)

1 3
Incase (2): h(g) =g1+9g2+ 391 = 591+ 02
: 1 3
Since g1 201,92§0,—§gl+92§0, Egl—gzzoand
min (v )——1 < g+ = h(g)
vely ,g) = 291 92_291 g2 = n\g).

Analogously,

3 3
vngaC)i(v,g) 5917922 591 + 92 (9)

(80) and (81) imply again (29).
1 1
Incase(3): h(g) =—g1— g2+ 291= 501~ 92
Sinceg; < 0,92 >0, —%gl +g2 >0, ggl — g2 < 0andso,

. 3 1
= — — < —= — —
Unencq(v,g) 591~ 02 < ~591— 02 h(g)

1 1
vgaé(v, g) 591+ 922 =591 = 92 (9)

(82) and (83) yield (79).

1 1
Incase(4): h(g) = —g1+ g2+ 591 = —591+ g2.

Itisclear from (77) and (78) that

. 1
min < —= =h < max .
vecl(v,g) < =591+ 92 (9) < Uecl(v,g)

Thus, in al the cases (1)—(4) we get (79), i.e. C1 isaconvexificator.
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(79)

(80)

(81)

(82)

(83)

(84)

In a similar way we can prove that C» is a convexificator as well. These
convexificators are minimal. On the other hand, C1 C Oy, f (z0), C2 C Omp f (z0)
and C1 # Omp f(z0), C2 # Omp f(z0) thet is, these convexificators are "smaller”

than ampf(:L"o) .
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Let ustake C1. Since (see Figure 3) 0, ¢ C1, the point zq is not a stationary one
(and, thus, is"out of the list of suspicious points’). The set Q; (see (49)) consists

of unit vectors located between the points <—i —i> and <—i —i>
P NV Vi3 Vi3

(these two pointsdon’t belong to Q7). Using the relation (48), we can get Q7 (see
(47)).

Consider now the set C». Since (see Figure 4) 0, ¢ C5, the point zq is not
astationary. The set 0, for this convexificator is the set of unit vectors located
between the points (—i i) and (—i i)

V5 V5 V13’ 13/

Thus, using the convexificators C; and C, we conclude that the set Q~ =

Q1 U Q, hasthe property:

h(g) <0, h(—g) >0 VgeQ .

THEOREM 9.2. (Mean-Vaue Theorem). Let C* and C~ : © — 2R" bean upper
and alower (C'F)-mappingsof f, respectively. If theinterval co{z1, z2} C Qthen
there existsan y € (0, 1) such that at least one of the following statements hold

1. thereexistsv € C*(z1 + v(z2 — x1)) such that

f(z2) — f(z1) = (v,22 — 71) (85)

2. thereexistsv € C~(z1+ y(z2 — 1)) such that (85) isvalid.

Proof. Let us consider the function

h(a) = f(z1+ a(z2 — 1)) — f(21) + o[ f(21) — f(22)]-

Sinceh(0) = h(1) = 0, thereexistsay € (0, 1) suchthat thefunction h attains
its extremal value on the interval [0,1] at . Let, for example, v be a minimum
point of h. Then the necessary condition for a minimum

hh(v,9) >0 VgeR (86)

holds, where
h(y + Bg) — h(y)

h¥(v,9) = liminf
p(1,9) i

5

= timint 571+ (v + Bg) o2 — 20)) — fws + (2~ )
+Bg(f (x1) — f(2))] = Fh(w1 + v(w2 — 21), g(w2 — 71))
ol (1) — Flan)] (87)

Letzo = 21+ y(x2 — 21), A = z2 — 21.
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If g =+1then

b9, A) + f(w1) = f(2) > 0. (88)
If g = —1then

p(2y, —A) = [f(w1) — f(z2)] > 0. (89)
Theinequalities (88) and (89) yield

Fb(my, —A) < flw2) — flz1) < fh(my, D). (90)
By the definition of a convexificator

i !
wergl—n('y)(w7g) S fD(x’Yag) S Uerg@((fy)(vag% (91)

where C~ (y) = C (21 + y(z2 — z1)).
It follows from (90) and (91) that

min_ (v, 22 —z1) < f(z2) — f(z1) < mMaX (v,22 — 71). (92)
veC~(7) veC~(7)

Since the function (v, z2 — z1) is continuous in v, it follows from (92) that for
somewv € C~(y) weget f(z2) — f(z2) = (v, 22 — 71).

Similarly, if v is a maximizer of h we employ the necessary condition for a
maximum:

hp(v,9) >0 VgeR
and follow the same line of arguments as above.

COROLLARY 92. If C : © — 2R" isa (CF) mapping of f then there exist a
v € (0,1) and v € C(z1 + y(z2 — 1)) such that (85) holds

Thisresult aso follows from Theorem 3.1 of [17] in the locally Lipschitz case.

REMARK. As corollaries we get the Clarke mean-value theorem [1] and the
Michel—Penot mean-value theorem [12].

For related mean-value theorems which employ the Clarke and Michel—Penot
subdifferentials see [17]. The main-value theorem of [17] was proved using a
two-sided upper convex approximation which differs from the upper and lower
convexicators, examined here.
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